Chapter Review 4 - Comprehensive Exercises
\(1 \quad 15 \quad 105 \quad \ldots \quad \ldots\)
a) 第16行的完整序列:1, 15, 105, 455, 1365, 3003, 5005, 6435, 6435, 5005, 3003, 1365, 455, 105, 15, 1
下两个值是 455 和 1365
b) \((1+2x)^{15}\) 中 \(x^3\) 的系数是 \(\binom{15}{3} \cdot 2^3 = 455 \times 8 = 3640\)
\(\binom{45}{17} = \frac{45!}{17!(45-17)!} = \frac{45!}{17!28!}\)
所以 \(a = 28\)
\(\binom{20}{n}p^n(1-p)^{20-n}\)
a) 当 \(p = \frac{1}{2}\) 时,5个人获胜
b) 当 \(p = 0.7\) 时,没有人获胜
c) 当 \(p = 0.6\) 时,13个人获胜
a) \(P(5) = \binom{20}{5}(\frac{1}{2})^5(\frac{1}{2})^{15} = 15504 \times \frac{1}{32} \times \frac{1}{32768} = 0.0148\)
b) \(P(0) = \binom{20}{0}(0.7)^0(0.3)^{20} = 1 \times 1 \times (0.3)^{20} = 3.49 \times 10^{-11}\)
c) \(P(13) = \binom{20}{13}(0.6)^{13}(0.4)^7 = 77520 \times (0.6)^{13} \times (0.4)^7 = 0.165\)
a) \((1-\frac{3}{2}x)^p = 1 + p(-\frac{3}{2}x) + \ldots\)
\(x\) 的系数是 \(-\frac{3p}{2} = -24\)
所以 \(p = 16\)
b) \(x^2\) 的系数是 \(\binom{16}{2}(-\frac{3}{2})^2 = 120 \times \frac{9}{4} = 270\)
c) \(x^3\) 的系数是 \(\binom{16}{3}(-\frac{3}{2})^3 = 560 \times (-\frac{27}{8}) = -1890\)
\((2-x)^{13} \equiv A + Bx + Cx^2 + \ldots\)
\((2-x)^{13} = 2^{13} + \binom{13}{1}2^{12}(-x) + \binom{13}{2}2^{11}(-x)^2 + \ldots\)
\(A = 2^{13} = 8192\)
\(B = -\binom{13}{1}2^{12} = -13 \times 4096 = -53248\)
\(C = \binom{13}{2}2^{11} = 78 \times 2048 = 159744\)
a) \((1-2x)^{10} = 1 + 10(-2x) + 45(-2x)^2 + 120(-2x)^3 + \ldots\)
\(= 1 - 20x + 180x^2 - 960x^3 + \ldots\)
b) 设 \(x = 0.01\),则 \(2x = 0.02\)
\((0.98)^{10} = (1-0.02)^{10} \approx 1 - 20(0.01) + 180(0.01)^2 - 960(0.01)^3\)
\(= 1 - 0.2 + 0.018 - 0.00096 = 0.817\)
a) \((2-3x)^{10} = 2^{10} + \binom{10}{1}2^9(-3x) + \binom{10}{2}2^8(-3x)^2 + \binom{10}{3}2^7(-3x)^3 + \ldots\)
\(= 1024 - 15360x + 103680x^2 - 414720x^3 + \ldots\)
b) 设 \(x = 0.01\),则 \(3x = 0.03\)
\((1.97)^{10} = (2-0.03)^{10} \approx 1024 - 15360(0.01) + 103680(0.01)^2 - 414720(0.01)^3\)
\(= 1024 - 153.6 + 10.368 - 0.41472 = 880.35\)
a) \((3+2x)^4 = 3^4 + 4 \cdot 3^3 \cdot 2x + 6 \cdot 3^2 \cdot (2x)^2 + 4 \cdot 3 \cdot (2x)^3 + (2x)^4\)
\(= 81 + 216x + 216x^2 + 96x^3 + 16x^4\)
b) \((3-2x)^4 = 81 - 216x + 216x^2 - 96x^3 + 16x^4\)
c) 设 \(x = \sqrt{2}\),则:
\((3+2\sqrt{2})^4 + (3-2\sqrt{2})^4 = (81 + 216\sqrt{2} + 216 \cdot 2 + 96 \cdot 2\sqrt{2} + 16 \cdot 4) + (81 - 216\sqrt{2} + 216 \cdot 2 - 96 \cdot 2\sqrt{2} + 16 \cdot 4)\)
\(= (81 + 216\sqrt{2} + 432 + 192\sqrt{2} + 64) + (81 - 216\sqrt{2} + 432 - 192\sqrt{2} + 64)\)
\(= 577 + 408\sqrt{2} + 577 - 408\sqrt{2} = 1154\)